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this is about:
how models capture some case of reality into a probability space
and how solution of stochastic processes
support quantitative evaluation of the case
... in a Markovian setting
based on CTMCs and DTMCs underlying GSPN models
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What are we talking when we talk about evaluating a model

a model uses some formalism to capture a case in some reality

the model identifies one single probability space

... on which we can define multiple stochastic processes and rewards

... amenable to solution techniques depending on the process class
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... about the Probability Space

a probability space characterizes an experiment as a triple 〈Ω,F ,P〉
Ω is the space of outcomes,
i.e. the set of possible behaviors that may result from the experiment

F is the space of events, each made of a set of outcomes
e ∈ F → ev ⊆ Ω
F is a sigma-algebra over Ω:

Ω ∈ F
if e ∈ Ω then Ω \ e ∈ F
if {en}∞n=1 is a countable set of events en ∈ F , then

⋃∞
n=1 en ∈ F

P : F → [0, 1] is a measure of probability over the set of events
P(e) evaluates the probability that the outcome belongs to the event e
the measure evaluates to 1 over the entire set of outcomes, i.e. F(Ω) = 1,
... and it is additive over countable union, i.e. if {en}∞n=1 is a countable set of
disjoint events en ∈ F , then

∑∞
n=1 P(en) = P(

⋃∞
n=1 en)
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Probability Space: an example with discrete outcomes

experiment: roll a die
an outcome is the value of the die
the set of outcomes is thus Ω = {1, 2, 3, 4, 5, 6}
an event is any subset of Ω, and F is thus the set 2Ω of the subsets of Ω
the measure of probability P descends from (fair die):
P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) = 1/6

another experiment: roll a die, until you get a 6
the number of values that make the outcome is not fixed, possibly infinite
but the set of outcomes is still countable
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Probability Space: an example with continuous outcomes

experiment: a travel schedule with guaranteed connection on the route
Wuhan->Paris->Florence

an outcome is a 4-tuple < τd
WUH , τ

a
P−CDG, τ

d
P−CDG, τ

a
FLO >:

departure/arrival times at Wuhan, Paris, Florence
the set of outcomes Ω is a subset of R4, with some constraints:

a ≤ τd
w ≤ A

b ≤ τa
p − τd

w ≤ B
c ≤ τd

p ≤ C
d ≤ τd

p − τa
p ≤ D

e ≤ τa
f − τ

d
p ≤ E

the set of events F is made of the "reasonable" subsets of Ω, measurable by
Lebesgue and "covering" Ω (... omissis)
the measure of probability P is derived through integrals over subsets of Ω
weighted by distributions of delays and durations

another experiment: a travel Wuhan->Paris->Florence where the Paris
connection is not guaranteed but a protection flight is ensured

an outcome combines discrete and continuous quantities (flights and times)

Remark: identifying a probability space may become difficult !

6 / 113



Probability spaces and random variables
Models

Markovian Stochastic Processes

Probability space
Random variables
The special case of exponentially distributed random variables
Other classes of continuous random variables

... about Random Variables

a random variable X over a probability space (Ω,F ,P) is a real valued
function X : Ω→ R such that ∀x ∈ R, {ω ∈ Ω|X (ω) ≤ x} ∈ F .

{ω ∈ Ω|X (ω) ≤ x} ∈ F guarantees ∃P({ω ∈ Ω|X (ω) ≤ x})
P({ω ∈ Ω|X (ω) ≤ x}) is the probability that X takes a value ≤ x , and we
thus write

Prob{X ≤ x} := P({ω ∈ Ω|X (ω) ≤ x})
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Conditional probabilities

TBD: is this referred to the measure P of a Probability Space or to CDF
of a Random Variable ?
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Cumulative Distribution and Probability Density Functions

a random variable X has a Cumulative Distribution Function (CDF) FX ()

FX (x) := Prob{X ≤ x} := P(ω ∈ Ω|X (ω) ≤ x})

FX (x) is monotonic non decreasing, with values in [0, 1] and
limx→∞ FX (x) = 1.
if FX () is absolutely continuous, then X also has a Probability Density
Function (PDF)

fX (x) :=
dFx (x)

dx
fX (x) is non-negative, with limx→∞ fX (x) = 0, and

FX (x) =

∫ x

−∞
fX (y)dy

informally:
fX (x)dx = Prob{X ∈ [x , x + dx ]}

which subtends:

fX (x) = limdx→0
Prob{X ∈ [x , x + dx ]}

dx
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Cumulative Distribution and Probability Density Functions

while a random variable X identifies a unique CDF FX and a PDF fX ,
the viceversa is not true:

CDF and PDF are not sensitive to differences affecting the value of X over a
null measure subset of Ω
relevant in the solution of almost sure problems, e.g. in the identification of
events occurring with probability 1 (w.p.1).

the support SX of a random variable X is the smallest closed interval
[a, b] ⊆ R, with a ∈ R

⋃
{−∞} and b ∈ R

⋃
{+∞}, such that

Prob{X < a} = Prob{X > b} = 0, i.e.
∫ b

a fX (y)dy = 1

a = sup{x ∈ R|FX (x) = 0} and b = inf{x ∈ R|FX (x) = 1}
a PDF fX () is Lebesgue equivalent when for any subset of the support
[α, β] ⊆ SX , ∫ β

α
fX (y)dy = 0 if and only if

∫ β

α
dy = 0

Lebesgue equivalence means that
the PDF fX () does not have impulses or holes within its support
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Discrete and continuous random variables

a random variable is continuous if its CDF is absolutely continuous
this guarantees the existence of a PDF
e.g. arrival time in Florence

a random variable taking values in a countable set is said to be discrete
e.g. summation of dice values before the first 6
the CDF becomes a stepwise function,
the PDF can still be represented as a sequence of Dirac δ impulses
the distribution can be described by a Probability Mass Function (PMF):

PMFt (τ) := prob{t = τ}

a random variable is mixed if it takes values in a continuous space but
still accepts non-null probabilities be concentrated in a countable set of
points
in the sequel, we refer to continuous random variables

yet, most can fit the case of discrete or mixed variables
(by accepting Dirac distributions)
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Moments and coefficients

moment of order n of a random variable X

E [X n] :=

∫ ∞
−∞

xnfX (x)dx

some coefficients derived from moments characterize a distribution

the expected value µX (aka mean or average) captures where the
distribution is centered:

µX :=

∫ ∞
−∞

x · fX (x)dx = E [X 1]

the variance σ2
X captures how much the variable is dispersed:

σ2
X :=

∫ ∞
−∞

(x − µX )2fX (x)dx = E [X 2]− (E [X ])2

TBD: a picture with two distributions with the same mean but different
variance
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Moments and coefficients

the standard deviation makes variance and mean comparable

σX :=
√
σ2

X

the variation coefficient CVX captures the relative dispersion

CVX :=
σX

µX

a low value of CVX means that values of X are concentrated close to µX
since the Exponential distribution has CV = 1,
distributions with CV > 1 are said hyper-exponential,
while those with CV < 1 are said hypo-exponential
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Moments and coefficients

the skewness γX captures the asymmetry of the distribution of X with
respect to its mean value:

γX :=

∫ ∞
−∞

(
x − µX

σX
)3fX (x)dx

in a mono-modal distribution, skewness is positive iff the mode comes
before the mean

moments of order higher than 2, and their corresponding coefficients,
including skewness, are not represented in the Central Limit Theorem:
their values are not relevant in the summation of infinite Independent
Identically Distributed (IID) variables.

a distribution is heavy tailed, if its moments do not exist beyond some
order:
e.g. for fX (x) = 1

x2.1 , the first order moment E [X 1] exists finite, but E [X 2]

does not as
∫∞

0
1

x1.1 exists finite, but
∫∞

0
1

x1.1 does not
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Multivariate random variables

a multivariate random variable is a vector of random variables 〈X1, ...XN〉
on the same probability space
a multivariate random variable has a joint Cumulative Distribution
Function

F〈X1,...XN〉(x1, ...xN) := Prob{X1 ≤ x1, ...XN ≤ xN}

and a joint Probability Density Function

f〈X1,...XN〉(x1, ...xN) :=
∂F〈X1,...XN〉(x1, ...xN)

∂x1...∂xN

i.e., using integrals instead of derivatives,

F〈X1,...XN〉(x1, ...xN) =

∫
y1≤x1

∫
y2≤x2

...

∫
yN≤xN

f〈X1,...XN〉(y1, ...yN)dy1dy2...dyN

for any S ⊆ RN ,

Prob〈X1, ...XN〉 ∈ S =

∫
〈y1,y2,...yN〉∈S

f〈X1,...XN〉(y1, ...yN)dy1dy2...dyN
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Independent random variables

two random variables X1 and X2 on the same probability space
are independent if the value taken by any of them does not condition the
distribution of the values taken by the other one

∀x1, x2 Prob{X1 ≤ x1|X2 ≤ x2} = Prob{X1 ≤ x1}

if X1 and X2 are independent

Prob{X1 ≤ x1 ∧ X2 ≤ x2} = Prob{X1 ≤ x1} · Prob{X2 ≤ x2}

and their joint probability density function is thus a product form
f〈X ,Y〉(x , y) = fX (x) · fY (y)

note that the concept of independence applies to components of a
multivariate random variable, here captured saying that X1 and X2 are
defined on the same probability space.

the concept of independence can be extended to N variables by
induction ...
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Exponential random variable: distribution

a random variable t is exponentially distributed (EXP) if its CDF Ft () is:

Ft (τ) := Prob{t ≤ τ} =

{
0 if τ < 0
1− e−λtτ if τ ≥ 0

Ft () is absolutely continuous and thus has a PDF ft () such that

Ft (τ) =

∫ τ

−∞
ft (x)dx

with

ft (τ) =
dFt (τ)

dτ
=

{
λte−λtτ if τ ≥ 0

else
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Exponential random variable: moments

(expected value) µt :=
∫∞

0 τ · ft (τ)dτ = 1
λ

(variance) σ2
t :=

∫∞
0 (τ − µt )

2 · ft (τ)dτ = 1
λ2

(variation Coefficient) CVt := σt
µt

= 1

λ is the rate and accounts for how urgently an event is expected
(in particular, 1

λ
is the mean time to the event)
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Exponential random variable: single parameter

an EXP distribution is completely identified by its rate.

when fitting some given statistics, having a single parameter prevents to
independently set the expected value and standard deviation, which
comprises one of the major limitations of the Exp variable ...

the usual practice is that the rate is set so as to fit the expected value (a
kind of rough application of Little’s law) ...
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Exponential random variable: minimum among variables

the minimum min := Min(t1, t2) among two EXP random variables t1 and
t2 is an EXP random variable, with rate Λ = λ1 + λ2

fmin(x)dx = Prob{Min(t1, t2) ∈ [x , x + dx ]}

= ft1 (x)dx ∗ Prob{t2 > x}+ ft2 (x)dx ∗ Prob{t1 > x}

= (λ1 + λ2)e−(λ1+λ2)x dx

the minimum min := Min(t1, t2, ...tN) among N EXP random variables is
an EXP random variable, with rate Λ =

∑N
n=1 lambdan

proof: by inductive hypothesis, the min among the first N − 1 variables is
an EXP with rate ΛN−1 :=

∑N−1
n=1 λn; the min among the N variables is

thus the minimum among this EXP and the N-th variable, and it has rate
ΛN := ΛN−1 + λN )
the maximum between two EXP variables is not an EXP.
This is unfortunate, as the maximum is what is computed in any
synchronization, and it would be useful that it could assumed to maintain
the properties of an EXP.
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Exponential random variable: memoryless property

in a queue where the waiting time is EXP, the time elapsed since when
the queue was entered does not condition the expectance on the time to
wait more
formally: let t be EXP, let t ′ be the variable obtained by conditioning t to
the assumption t > k , and let t ′′ be the variable obtained by reducing t ′

by k ; we verify that t ′′ has the same distribution as that of t :

ft (τ) :=

{
λte−λtτ if τ ≥ 0
0 else

t ′ := t |t > k

ft′(τ) =


ft (τ)

Prob{t > k} if τ > k

0 else
with Prob{t > k} = 1− Ft (k) = e−λt k

t ′′ := t ′ − k

ft′′(τ) = ft′−k (τ) = ft′(τ + k) =


ft (τ + k)

Prob{t > k} if τ > 0

0 else
= ft (τ)
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Exponential random variable: memoryless property

Viceversa, a continuous and memoryless distribution is exponential. A
proof can be obtained by discretization ... TBD ... or it can be obtained
using an argument that we will use later for CTMCs
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Exponential random variable: random switch

if X and Y are EXP variables with rates λX and λY , respectively, then

Prob{X < Y} = Prob{X ≤ Y} =
λX

λX + λY

proof: by butchery ... TBD

the property is lifted to N concurrent variables by observing that the
minimum among X2, ...XN is an EXP with rate λ2 + ...λN :

proof: if X1, ...XN are EXP variables with rates λ1...λN , respectively, then
Prob{X1 < Xn∀n ∈ [2,N]} = Prob{X1 ≤ Xn∀n ∈ [2,N]} = Prob{X1 ≤
Minn∈[2,N]{X2...XN}} = λ1

λ1+(λ2+...λN )
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Exponential random variable: independence

if X and Y are EXP and τ is any stochastic variable, then the variables
X − τ |X > τ and Y − τ |Y > τ are still independent and their joint
distribution is in product form:

F〈X−τ,Y−τ |X≥τ,Y≥τ〉(x , y) = FX (x) · FY (y)

Proof: ... use fX−τ (x) = fX (x + τ) ...
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Exponential random variable: invariance of the min random switch

Given two EXP variables X and Y , the knowledge of the value of their
minimum does not condition the probability of which of them realizes the
minimum:

Prob{X ≤ Y‖Min{X ,Y} ≤ c} =
λX

λX + λY

A practical counterintuitive consequence:
i’m waiting for any of two events to occur;
I know that their occurrence times are distributed as Exp variables X and Y ,
with λX = 1 and λY = 0.1, i.e. with expected values X̄ = 1 and Ȳ = 10;
I’m told that the first event occurs at time 10;
in a naive intuition, I might think that the event is more probably Y , yet, the
probability that the event is Y is λY

λX +λY
= 0.00990099, the same as I had

before I knew the time of occurrence.
Proof: ... TBD

if this sounds counter-intuitive, the reason can be that the property of
being memoryless is not actually realized in most practical situations
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Exponential random variable: invariance of the min distribution

Viceversa, Given two EXP variables X and Y , knowing which of them
makes the minimum does not condition the value of the minimum:

Prob{Min{X ,Y} ≤ c|X ≤ Y} = 1− e(λX +λY )c

Proof: ... TBD
A practical consequence of the two invariance properties:

suppose you are simulating the race among a set of N Exp variables
X1, ...XN (e.g. the completion time of the first among of N concurrent
operations), and you need to generate a sample that determines which
variable will realize the minimum and at what time.
A direct way to generate the sample is to extract a sample for each of the N
Exp variables and then select the minimum.
A different way producing the same statistical result is: evaluate the sum of
rates Λ = λ1 + ...λN ; select which transition will fire first with a sample for
the discrete distribution that assigns to XN the probability λn

Λ
; determine the

time of this minimum through a further sample from the Exp distribution with
rate Λ.

26 / 113



Probability spaces and random variables
Models

Markovian Stochastic Processes

Probability space
Random variables
The special case of exponentially distributed random variables
Other classes of continuous random variables

Exponential random variable: summary

support x ∈ [0,∞]
fτ (x) := λe−λx

τ̄ = στ = 1
λ

an EXP variable is memoryless
(sufficient and necessary for continuous distributions):

given fτ (x) := λe−λx x ∈ [0,∞]
if τ ′ := τ − x0|τ > x0 then fτ ′(x) = fτ (x)

the min of a set of EXP is EXP with rate equal to the sum of rates
switching probability independent from the execution time λ0∑N

n=0 λn

samples can be easily generated by inversion

... good news for analysis, bad for expressivity
infinite support, single parameter, no memory
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Geometric random variable

the discrete random variable N is geometrically distributed if its MDF is:

MDFN(n) := Prob{N = n} = p · (1− p)n−1

the geometric distribution results from a sequence of repeated Bernoulli
experiments with success probability p
the geometric distribution is the discrete analog of the EXP continuous
distribution

a discrete random variable is memoryless iff it is geometrically distributed
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Expolynomial distributions (aka exponomial)

fτ (x) =
∑N

n=0 cnxKn e−λnx Kn ∈ N, λn ∈ R
closed form integration (note that Kn ∈ N)∫

cnxKn e−λnx = cnλn

Kn∑
k=0

(Kn
k

)
xKn−k e−λnx

closed wrt arithmetic operations, integration, derivation

what about fitting other distributions through expolynomials?
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Continuous Phase Type distributions - CPH

time to absorption in a Continuous Time Markov Chain (see later)

by construction in the class of Expolynomial with support [0,∞]
(for acyclic chains or allowing complex exponentials)
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Continuous Phase Type distributions - CPH

dense in the field of all positive-valued distributions
well developed fitting techniques (and tools)
suffering across discontinuities and finite supports
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Continuous Phase Type distributions - CPH

1

1A.Bobbio, M.Telek, "A benchmark for PH estimation algorithms: result for Acyclic-PH", Stochastic Models, 1994.
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Erlang distribution

support : x ∈ [0,∞]

fτ (x) := λk xk−1e−λx

(k−1)!

τ̄ = k
λ

στ = τ̄√
k

CV = 1√
k

sum of k identical independent EXP with rate λ (thus a Phase Type)

when k ∈ R, the Erlang becomes a Gamma distribution
integrals involve the γ function
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Weibull distribution

support : x ∈ [0,∞]

fτ (x) := k
λk xk−1e−( x

λ
)k

τ̄ = λΓ(1 + 1
k )

σ2
τ = λ2(Γ(1 + 2

k )− Γ(1 + 1
k )2)

failure rate = k
λ

( x
λ

)k−1

not in the class of expolynomials (and thus not even of CPH)

if X is uniform, then Y := λ(−ln(1− X ))
1
k is a Weibull

(useful for generating samples in simulation)

failure rate can be growing (an ageing component), decreasing (a
component that consolidates) or constant (a memoryless component).
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where do distributions come from?

EXP: no memory of time elapsed
DET: timeout, watchdog, synchronous release
UNI: jitter, delay wrt uncorrelated process, arrival time distribution in a
Poisson process conditioned to n arrivals within t
Continuous Phase Type: fit of a distribution over [0,∞]

Expolynomial: fit of a measured histogram, possibly over bounded
support
upper bounded support: timeout or watchdog truncation, guaranteed
Worst Case Execution Time
lower bounded support: min guaranteed intertime, Best Case Execution
Time
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... about Models, Formalisms, Random Variables, and Prob. Spaces

a Model captures a Case using some Formalism

a stochastic Model includes Random Variables

a fully stochastic Model identifies a unique Probability Space
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a Formalism for untimed concurrent activities

Petri Nets (PN),
a Formalism for concurrent untimed discrete event systems

a place (circle) encodes a state condition, true when containing tokens
a transition (bar) encodes a discrete event,
enabled if all input conditions are true and all inhibiting conditions are false
an enabled transition is eventually fired or disabled
at firing, remove one token from each input place,
and add a token to each output place

p0 p1

t1 t2

p3

p2

t3

p4

p5

t0 t4

abstraction
no timing: this is about eventually or never
no probabilities: this is about necessary or possible
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... more details on Petri Nets

syntax
PN = 〈P,T ,A+,A−,A•,Mo〉

P and T are disjoint sets of places and transitions
A+ : T → P, A− : P → T , and A• : P → T
are pre-conditions, post-conditions, and inhibitor-arcs
M0 : P → N||P|| is the initial marking

p0 p1

t1 t2

p3

p2

t3

p4

p5

t0 t4

semantics
state := marking (m : P → N)
to is enabled if there is at least 1 token in each input place
and 0 tokens in each inhibitor place
at the firing of t0, remove one token from each input place of t0,
and then add one to each output place of t0

... plus convenience shorthands
enabling functions, update functions ... (as in Minski machines)
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a PN Model of mutual exclusion

synchronization of two threads on a binary semaphore mutex
each thread cycles through the states idle,waiting, and critical ;
mutual exclusion enforced by v and p operations on the mutex
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a Model of mutual exclusion based on the Formalism of Automata

The same model could be specified using communicating finite state
machines instead of Petri Nets

3 communicating automata: one for each thread and one for the mutex;
synchronized two-by-two on p and v events

specification in a single Finite State Machine is possible as well
a flat automaton omo-morphic to the reachability graph,
each location encodes the states of each thread and the mutex

the (flat) PN model natively supports decomposition of the state
multiple state components represented by different places
enables"local" reasoning on pre- and post-conditions of each event
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a PN Model of a producer consumer system

a producer and a consumer
exchanging products over a buffer with capacity 5

exercise: add failures on the buffer when busy,
and repair restoring the buffer in the free state
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a Model of producer consumer based on the Formalism of Automata
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... about the Formalism of Petri Nets and Probability Spaces

a Petri Net Model can be used to specify an experiment
a possible outcome: the marking when the PN stops
(i.e. Ω := set of reachable stopping markings)

another kind of outcome might be:
the sequence of transitions fired before stopping

... on state properties vs path properties

p0 p1

t1 t2

p3

p2

t3

p4

p5

t0 t4

... in any case,
outcomes do not observe time
... and no measure of probability is provided
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two reasons for stochastic models

non-functional requirements may involve probability
various classes of quality figures natively subtend a probabilistic
characterization: performance, reliability availability and maintainability
(RAM), performability and recoverability.
safety requirements are usually expressed with certainty, but they are often
recast into a probabilistic form
e.g.: a protection mechanism is triggered whenever the system is not able to
guarantee with certainty that some safety requirement is satisfied, but the
corresponding reduction of availability within a given time period is restricted
in probabilistic form.

(the abstraction of) system behavior may be probabilistic
by inherent consequence of non controllable facts
(e.g. the Execution Time of a computation chunk with random duration)
or by design (e.g. randomization in the Ethernet truncated exponential
backoff)
or by abstraction or epistemic origin, due to the inability to observe the
details of a deterministic system
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... about Models, Formalisms, and Random Variables [step 2]

a Model captures a Case using some Formalism

a stochastic Model includes Random Variables
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Generalized Stochastic Petri Nets (GSPN)

Generalized Stochastic Petri Nets
augment Petri Nets with stochastic durations and probabilistic switches

transitions are either immediate (IMM, thin bar)
or their duration is an exponential (EXP, thick bar) random variable
IMM transitions have priority over EXP transitions
choices among IMM transitions are resolved by random switches
choices among EXP transitions are resolved by race semantics,
relying on the minimum among exponentially distributed transitions
IMM random switches and EXP rates may depend on the marking

p0

p1

t1 t2

p3

p2

t3

p4

p5

t0 t4

.1

.9

1.

10.
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... more details on GSPN: syntax

Generalized Stochastic Petri Net (GSPN)

GSPN = 〈P,T ,A−,A+,A·,M0,R〉

the set of transition T is partitioned in two sets of exponentially distributed
transitions (EXP) and immediate transitions (IMM):

T = T IMM ⋃
T EXP

T IMM ⋂
T EXP = ∅

R is a positive real valued function associating each transition with a value
that depends on the current marking:

R : T × N#P → R

remark:
for te ∈ T EXP , R(te,m) encodes the rate of the EXP duration of te;
for ti ∈ T IMM , R(ti ,m) encodes the probabilistic weight of ti in a random
switch.
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... more details on GSPN: semantics

state := marking (m : P → N)
a transition is enabled if each input place contains one token at least
and each inhibiting place does not contain any token
T IMM,en(m) := set of IMM transitions enabled by m
T EXP,en(m) := set of EXP transitions enabled by m
if T IMM,en(m) 6= ∅, the next firing occurs after a null delay,
and ti ∈ T IMM,enab fires with probability

Prob{tifires} :=
R(ti ,m)∑

th∈T IMM,en(m) R(th,m)

if T IMM,en(m) = ∅, the next firing occurs after an EXP delay with rate
Λ :=

∑
tk∈T IMM,enab R(tk ,m), and te ∈ T EXP,en(m) fires with probability

Prob{tefires} :=
R(te,m)∑

tk∈T EXP,en(m) R(tk ,m)

(race semantics and minimum among EXP random variables)
when to ∈ T fires, the marking m is updated "as usual"
(resampling of times to fire and EXP memoryless property)
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GSPN modeling pragmatics

IMM transitions for (relatively) negligible durations,
EXP for anything else (not good news for expressivity)

Exp rates equal to the inverse of the mean value of the duration

marking dependent rates for actions performed in parallel or series
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GSPN modeling pragmatics: single vs parallel service - 1/2

Sequential: 4 jobs with rate 1, served sequentially (single server
semantics)
(completion time is an ERL(1.,4) random variable)
Parallel: jobs are served in parallel (multiple server semantics)
ParallelEqualized: jobs are served in parallel, but rate λp is set so as to
have the same mean value µs of Sequential:

1
4λp

+
1

3λp
+

1
2λp

+
1

1λp
=

4
µs
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GSPN modeling pragmatics: single vs parallel server - 2/2

Cumulative Distribution Function of the completion time
Parallel (upper plot) completes much faster
Sequential and ParallelEqualized have comparable completion times,
with ParallelEqualized starting faster and then becoming slower.
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a GSPN Model for a producer consumer with buffer breakdowns - 1/2

a producer/consumer system,
with bounded buffer size, with buffer breakdowns and repair

production, service and breakdown occur in parallel,
repair is parallel but bounded to a maximum value
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a GSPN Model for a producer consumer with buffer breakdowns - 2/2

probability that producer threads are blocked waiting for free slots on the
buffer, evaluated as the mean number of tokens in p1 when p4 is empty
(If(p4==0,p1,0)) (the curve tending to 1.159);

mean number of consumer threads blocked waiting for a busy slot,
evaluated as the mean number of tokens in p8 when p5 is empty
(If(p5==0,p8,0)) (the curve tending to 0.735)
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a GSPN Model for on/off control in a server cluster - 1/4

Idle and Running account for the level of load
On, Off, and Failed are the number of on, off, and failed servers
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a GSPN Model for on/off control in a server cluster - 2/4

arrival rate proportional to number of tokens in Idle (in parallel)
served rate proportional to min between On servers and Running jobs:
service in parallel with degree of concurrence equal to the number of
active servers
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a GSPN Model for on/off control in a server cluster - 2/4

switch-on/off started by IMM transitions t0 and t2, under enabling
functions (not shown) if(Running<(On*2-2)) and
if(Running>(On*2+2)) (hysteresis)
switch actuation delay modeled by t1 and t3 (preselection)
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a GSPN Model for on/off control in a server cluster - 2/4

a server can fail in use (fail) or at switch-on (ko)
switch-on failure probability 5

5+95 for weights 5 and 95 of ko and ok
repair has a maximum degree of concurrence 2
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a GSPN Model for on/off control in a server cluster - 2/4
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a GSPN Model for on/off control in a server cluster - 2/4

control policy for switching on and off a cluster of servers
Idle and Running account for the level of load
arrival rate proportional to the number of tokens in idle: parallel arrivals
served rate proportional to the minimum between the number of active
servers on the number of running jobs at service: jobs run in parallel with a
degree of concurrence equal to the number of active servers
total number of tokens in places idle and running sets the precision in
the discretization of a real level of load
On and Off are the number of servers on and off
switch-off is decided by the IMM transitions t0 and t2, guarded by enabling
functions (not shown) if(Running<(On*2-2)) and
if(Running>(On*2+2))
switch actuation delay modeled by the t1 and t3. (preselection)
Failed is the number of failed servers
a server can fail over time while it is in use (fail),
or it can have a concentrated failure at switch on (ko)
random switch between ko and ok determined by transition weights (not
shown) 5 and 95: a concentrated failure occurs with probability 5

5+95
repair has a maximum degree of concurrence 2
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a GSPN Model for on/off control in a server cluster - 3/4

(from top to bottom at time 10) the average number at time t of:
number of pending jobs (Running);
number of switched off servers (Off);
number of active servers (On);
number of switching servers (ToSwitchOff+ToSwitchOn);
number of failed servers (Failed).
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a GSPN Model for on/off control in a server cluster - 4/4

the same transient rewards from a different initial worst case condition
the offered load is maximum (i.e. idle=0 and running=8)
and all servers are off (i.e. on=0 and off=4)

the measure of interest is the settling time to recover the steady state
a measure of recoverability
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a GSPN Model for on/off control in a server cluster - 5/4

steady state probabilities invariant to initial conditions (ergodic model)
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Exercise... (later discovered to be about irreducibility)

two servers initially active, but subject to failure

the first to fail will be abandoned

the other will be maintained and repaired after each failure
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Exercise... (later discovered to be about irreducibility)

two servers initially active, but subject to failure
the first to fail will be abandoned
the other will be maintained and repaired after each failure
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qualitative, quantitative, and mixed models

non-deterministic model: multiple behaviors from the same state
qualitative: about existential|universal quantification over the set of behaviors
e.g.: Petri Nets (Time Petri Nets, Timed Automata)

stochastic model: behaviors associated with a measure of probability
some say probabilistic when it in includes discrete choices (e.g. the roll of a
die) and it is stochastic when it involves the sample of a continuous variable
(e.g. the duration of a computation).
in Greek, "stochastic" means "able to make reasonable predictions"
quantitative: about the probability of sets of behaviors
e.g.: Generalized Stochastic Petri Nets (Stochastic Time Petri Nets)

mixed non-deterministic and stochastic models: some choices have
stochastic characterization and others are left non-deterministic

ground for stochastic optimization: find the determination of
non-deterministic choices that results in the best/worst probabilistic behavior
e.g.: Markov Decision Processes (Markov Automata)
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... just a mention of a mixed stochastic/non-deterministic Formalism

Markov Decision Processes
discrete time
at each step, non-deterministic choice of the discrete probability distribution
that determines the next state
a strategy resolves the choices, possibly with randomization, possibly
depending on the state or the history

a Formalism for stochastic optimization
an MDP Model identifies a (possibly infinite) set of probability spaces
an MDP Model with a strategy is fully stochastic, and identifies a unique
probability space
optimization problem: find the strategy that identifies the probability space
where some reward is maximized (or minimized)
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... about Models, Formalisms, Random Variables, and Prob. Spaces

a Model captures a Case using some Formalism

a stochastic Model includes Random Variables

a fully stochastic Model identifies a unique Probability Space
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... what are Models intended for?

philosophically, models serve to gain model-driven insight
verification of functional requirements

usually qualitative: about what is possible or necessary
in the set of behaviors of a model
e.g., in the RTCA-178B perspective: formalization, disciplined reasoning,
automated reasoning

quantitative evaluation of non-functional requirements
early assessment of design choices
(main focus of this presentation)
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Models are often for quantitative evaluation - 1/2

some possible questions
is the "performance" sufficient, and, to what extent ?
is the contribution of producers, consumers, and of the buffer balanced ?
should be better enhance the rate of production or service ?
or should we increase the number of producers or consumers?
or should we enhance failure and repair processes, or the number of slots ?

Exercise: use the Oris tool to answer some of the above questions
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Models are often for quantitative evaluation - 2/2

probability that producer threads are blocked waiting for free slots on the
buffer, evaluated as the mean number of tokens in p1 when p4 is empty
(If(p4==0,p1,0)) (the curve tending to 1.159);

mean number of consumer threads blocked waiting for a busy slot,
evaluated as the mean number of tokens in p8 when p5 is empty
(If(p5==0,p8,0)) (the curve tending to 0.735)
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what are we talking when we talk about evaluating a model

a Model uses some Formalism to capture a Case in some reality

the Model identifies one single Probability Space

... on which we can define multiple Stochastic Processes and Rewards

... amenable to solution techniques depending on the process class
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Models, Probability Spaces, and Random Variables

recall: a Model identifies a Probability Space (Ω,F ,P)

an outcome ω ∈ Ω is a run of the model
an event in the σ-algebra F is a set of runs
the measure of probability P : F → [0, 1]
is induced by stochastic parameters and by the initial condition

recall: a Random Variable is a non-negative function on the set of outcomes Ω
e.g. the marking of a GSPN, the number of tokens in some specific place, ...
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Stochastic Process

a Stochastic Process M
is "a" collection of random variables on a Probability Space (Ω,F ,P),
taking values in some measurable state space M,
indexed by some parameter t taking values in a totally ordered set T :

M = {M(t), t ∈ T}

Remark: a Model identifies one Probability Space,
on which many Stochastic Processes can be identified

with reference to a GSPN Model: the marking, the marking restricted to
some subset of places, ... at time t or after n firings, ...
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Stochastic Process

a Stochastic Process M := {M(t), t ∈ T} is
continuous/discrete-space whether M is continuous/discrete
continuous/discrete-time whether T is continuous/discrete

t

M(t)

ma

mb

mc

n

M(n)

mb

mc

t0 t1 t2 0t6t5t4t3

ma

mb

ma

mc

ma

mb

ma

mc

1 65432

t

M(t)

mc

n

M(n)

mb

mc

0

ma

mb

ma

mc

1 65432

continuous space

discrete space

continuous time discrete time

continuous time processes are assumed to be Right Continuous:

M(t0) = lim
t→t+

0

M(t)
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marking process

t

M(t)

ma

mb

mc

n

M(n)

mb

mc

t0 t1 t2 0t6t5t4t3

ma

mb

ma

mc

ma

mb

ma

mc

1 65432

discrete space

continuous time discrete time

ma

we mainly focus on discrete-space processes
states are reachable markings
parameter t may stand for (continuous) time
... or for the (discrete) number of firings

in particular, we focus on the Marking Process underlying a GSPN

marking process := M = {m(t), t ∈ R≥0}
m(t) := marking at time t
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embedded chains

a discrete time process obtained by sampling of a continuous time
process is named embedded

the most common case: sample the state at each transition

other sampling strategies may be useful as well:
at equidistant time points, at the transitions of some other process, ...

t

M(t)

ma

mb

mc

n

M(n)

ma

mb

mc

t0 t1 t2 0t6t5t4t3

ma

mb

ma

mc

ma

mb

mc

ma

mb

ma

mc

1 65432

(a) (b)

example: evolution of the marking of a GSPN through markings ma, mb
e mc, observed as a CTC M = {M(t), t ∈ R+

o } (Fig.(a)), or as its
embedded DTCMe = {M(n), n ∈ N} (Fig.(b))
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Markov condition and time homogeneity

Markov condition:
the most recent state observation subsumes any previous one

∀t ,∀n, ∀t ≥ tn ≥ ... ≥ t1 ≥ t0 ∈ T :
Prob{X (t) ≤ x |X (tn) = xn,X (tn−1) = xn−1, ...,X (t0) = x0}
= Prob{X (t) ≤ x |X (tn) = xn}

(the same formulation for continuous and discrete time processes)

time-homogeneity:
behavior does not depend on the absolute time

Prob{X (t) ≤ x |X (tn) = xn} = Prob{X (t − tn) ≤ x |X (0) = xn}
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Discrete Time Markov Chain - DTMC

Discrete Time Markov Chain (DTMC):
a discrete time stochastic process X = {X(n), n ∈ N}
that always satisfies the Markov condition:

∀i, j, n,m, ∀M, iM , iM−1, ..., iM ,mM ≥ mM−1 ≥ ... ≥ m1 ≥ 0,
Prob{X(n + m) = j|X(n) = i} =
Prob{X(n + m) = j|X(n) = i,X(n −m1) = i1, ...X(n −mM ) = iM}

we restrain the treatment to finite state and time homogeneous DTMCs:

Prob{X (n + m) = j|X (n) = i} = Prob{X (m) = j|X (0) = i}

78 / 113



Probability spaces and random variables
Models

Markovian Stochastic Processes

underlying Stochastic Process(es) of a Model
Discrete Time Markov Chain (DTMC)
Continuous Time Markov Chains (CTMC)
underlying stochastic process of a GSPN

DTMC - quantities of interest

we are interested in evaluating
transient probabilities

πi (n) := Prob{X(n) = i}

steady state probabilities, if they exist

πi := lim
n→∞

πi (n)
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DTMC - characterizing quantities

a DTMC is completely characterized by
probability distribution of the initial state:

π0
i := πi (0)

transition probabilities at time n:

pij (n) := Prob{X(n + 1) = j|X(n) = i}

which, for a time-homogeneous DTMC, take the form:

pij := pij (0) = pij (n)

note that the matrix pij is stochastic, i.e.:
pij ∈ [0, 1] and

∑
j=1,I pij = 1, with I:=number of states.

a finite-state time-homogeneous DTMC
is thus conveniently figured out as a graph

each and every state is a vertex
the edge from state i to state j is labelled by the value pij
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on the relation between DTMCs and geometric random variables

the geometric distribution implements the concept of memoryless
behavior for a discrete time random variable; in a similar manner, the
DTMC realizes the concept of Markovian behavior, where the future
evolution depends on the current state but not on the past history
through which the state was reached

in a DTMC, the sojourn time in state k is a random variable with
geometric distribution with rate pkk :

Prob{SJk = i} = pi−1
kk (1− pkk ), i ≥ 1

proof: assuming Hi (n) := Prob{SJi > n}, by the Markov condition:

Hi (n + 1) := Prob{SJi > n + 1} = Prob{SJi > n} ∗ pii = Hi (n) · Hi (n)

which yields Hi (n) = pn
ii and thus:

Prob{SJi = n} = pn
ii · (1− pii )
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DTMC - Transient analysis

Chapman-Kolmogorov equations

πi (n + 1) =


I∑

j=1

πj (n) · pji if n > 0

π0
i if n = 0

proof: by the law of total probability and the Markov condition

in vectorial form

π(n) =

{
π(n − 1) · P if n > 0

π0 if n = 0

computational perspective
transient probabilities are derived from initial probabilities π0 through
repeated vector-matrix products
largely facilitated by the fact that P is a stochastic matrix, i.e. its elements
are non negative values, lower than 1, summing up to 1 on each row.
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DTMC - Existence of steady state probabilities

if a DTMC is finite, time-homogeneous, irreducible and aperiodic,
the limit of transient probabilities exists unique and is the solution of{

π = π · P
|π| = 1

proof: the complex part is existence and unicity (omissis);
the form is just the limit on Chapman-Kologorov equations

computational perspective
steady state probabilities are determined as the solution of a linear system
they do not depend on initial probabilities (ergodicicty)
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DTMC - irreducibility

irreducibility relates to the ability of a system to maintain all its states
always reachable

a DTMC is irreducible
if it is strongly connected and all its states are recurrent
a state is recurrent if the probability to eventually return back to it is 1

a Bottom Strongly Connected Component (BSCC)
is an irreducible subset of states

84 / 113



Probability spaces and random variables
Models

Markovian Stochastic Processes

underlying Stochastic Process(es) of a Model
Discrete Time Markov Chain (DTMC)
Continuous Time Markov Chains (CTMC)
underlying stochastic process of a GSPN

... more details about irreducibility - TBD

Irreducibility relates to the ability of a system to maintain all its states
always reachable, and can be characterized in terms of transient and
recurrent states.
A state r is recurrent if when reached once, With Probability 1 it will be
reached again:

∞∑
n=1

Prob{firstr = n|X (0) = r} = 1

Note that this implies that, With Probability 1, r will be visited infinitely
often.
Conversely, a state t is transient if there is a non null probability that
when that state is left it will not be reached anymore:

∞∑
n=1

Prob{X (n) = t |X (0) = t} < 1

Note that this implies that, With Probability 1, the state t will eventually
become un-reachable.
A DTMC is strongly connected when for any two states i and j there is a
non null probability that starting from state i , state j will be eventually
reached:

∞∑
n=1

Prob{firstj = n|X (0) = i} > 0

A DTMC is said to beirreducible if it is strongly connected and all its
states are recurrent: strong connection guarantees that each state has a
non-null probability to be reached from any initial state; and, recurrence
of all states guarantees that each reachable state will stay reachable
over time.
Conversely, a DTMC that is not irreducible is said to be reducible, which
means that after some number of steps, with some non-null probability
some states will be not reachable anymore. In turn, this implies that
when the number of steps tends to infinity, With Probability 1, behavior
will be confined within some subset of the initially reachable states. This
captures the real essence of the concept of reducibility: a reducible
DTMC is a process that starts running within a set of states and
eventually traverses some irreversible degradations that restrain the set
of reachable states. TBD: esempio dei tre servers, dove il primo a fallire
nn viene mai riparato e gli altri due si.
A Bottom Strongly Connected Component (BSCC) is a subset of the
states of a DTMC that are all recurrent and strongly connected, i.e. is a
subset of states that comprise an irreducible DTMC. If a DTMC has
multiple BSCCs, With Probability 1, behavior will be eventually
constrained within one of them.
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... an example about irreducibility

a GSPN model with a reducible underlying DTMC (two BSCC)
two servers are initially active;
the first to fail will be abandoned
the other will be repaired after each failure
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... more about aperiodicity

Aperioditicy relates to the ability of a system to exhibit cyclic behaviors
that are not constrained to have a length multiple of some period.

a DTMC is aperiodic if all its states are aperiodic
a state is periodic with period T > 1 if all its return times are multiple T

a GSPN with a periodic underlying DTMC (period 4)
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... more details about aperiodicity - TBD

Aperioditicy relates to the ability of a system to exhibit cyclic behaviors
that are not constrained to have a length multiple of some period. The
concept is characterized in terms of return time.
A state i accepts the return time m if there is a non-null probability that
starting from i the process will come back to i after m steps:
Prob{firsti = m|X (0) = i} > 0
In general, a state may accept multiple different return times.
The period of state i is the Maximum Common Divisor among all return
times accepted by i .
A state i is said to be periodic if its period is different than 1. It is said to
be aperiodic if it is not periodic.
TBD: una figura di una DTMC periodica. Poi una con la separazioen
delle masse. e poi una con la riduzione di una DTMC peiodica alal forma
aperiodica.
To grasp the real meaning of the concept of periodicity, it can be useful
considering what happens if a state i has period K > 1 and all the
probability mass is initially concentrated in i (i.e. with certainty, the initial
state is i). It is not said that after K steps the probability of i will be 1
again, as in general K is not the unique accepted return time.
Conversely, it is always guaranteed that the probability of i will be 0 in all
the times that are not a multiple of K ; in fact, if i could accept a non null
probability at any such time, then there would be a return time that is not
a multiple of K . Note that this indicates that the real concept is about
aperiodicity more than about periodicity: if state i is aperiodic, even if the
probability is initially concentrated in i , there will be a sufficiently large
number of steps H, such that for every h > H, state i will have a non null
probability at time h.
It is quite straightforward to verify that, in an irreducible DTMC, either all
states have the same period or they are all aperiodic. The property does
not applies to reducible DTMCs as different Bottom Strongly Connected
Components might have different periods. By extension, a DTMC is said
to have period K if all ist states have period K > 1, and it is said to be
aperiodic if it is not periodic. Note that a sufficient condition to ascertain
that a DTMC is aperiodic is the existence of 2 states that are visited
within 2 cycles with different mutually prime lengths. The existence of
any self loop is also sufficient to exclude periodicity.
It is relevant to note that a DTMC with period K can always be simplified
into K "separate" aperiodic DTMCs, which will never mix their initial
mass of probability. Such sub-DTMCs can be identified by suppressing
any state that is not a multiple of the period and by recomputing
probabilities among survived states; this is performed in straightforward
manner due to the guaranteed absence of cycles with length lower than
the period. Each sub-DTMC may have its own steady state probabilities,
but these will comprise different limits for different subsequences tending
to different values.
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steady state probabilities - TBD

If steady state probabilities exist, they can be determined in
straightforward manner by taking the limit on the left-hand-side and the
right-hand-side of Eq.(??):

lim
n→∞

π(n + 1) = lim
n→∞

π(n) · P

which yields,
π = π · P

Since P is stochastic, each of its rows sums up to 1 and P cannot have
maximum rank so that this equation has (at least)∞1 "parallel"
solutions. The following condition selects in the multiplicity the solution
that satisfies the property of unit-measure:{

π = π · P
|π| = 1 (1)

Note that, according to Eq.(1), if they exist, steady state probabilities are
determined as the solution of a linear system.
Also note that Eq.(1) does not depend on the vector of initial
probabilities. Which means that, if they exist, steady state probabilities
do not depend on the initial distribution. In general, a system whose
steady state behavior does not depend on the initial condition is said to
be ergodic, which in its greek root means that energy will find its way.
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derived measures - TBD

Il tempo di soggiorno SJi in uno stato i (inteso come numero di passi di
permanenza nello stato) e’ una variabile geometrica:

Prob{SJi = k} = pk−1
ii (1− pii ) (2)

e il tempo medio speso in i dall’arrivo all’uscita e’ quindi:

E [SJi ] =
1

1− pii
(3)

Il tempo medio di ritorno dello stato j (ovvero il numero medio di passi tra
due successivi ingressi nello stato j) e’ l’inverso della sua probabilita’
limite:

Mj =
1
πj

(4)

Sia Nj (n) il numero di visite dello stato j entro i primi n passi di
esecuzione della catena. Nj (n)

n e’ la frequenza di ingresso nello stato j e
quindi:

lim
n→∞

Nj (n)

n
= πj

D’altra parte, se Mj (n) denota il numero medio di passi tra due ingressi
in j misurato sui primi n passi, il prodotto di Mj (n) per Nj (n) tende ad
essere uguale al numero dei passi eseguiti n:

lim
n→∞

Nj (n) ∗Mj (n)

n
= 1

da cui segue:
1
Mj

= lim
n→∞

Nj

n
= πj

Il numero medio di visite di i tra due successive visite di j (visit ratio),
denotato come vij , e’:

vij (τ) = lim
n→∞

Ni (n)

Nj (n)
=

limn→∞
Ni (n)

n

limn→∞
Nj (n)

n

=
πi

πj
(5)
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DTMC - more quantities of interest

distribution of the first passage time in some state i ,
i.e. probability that state i has been visited within n steps

ηi (n) := Prob{firsti ≤ n}
with firsti := min

k∈N
{k |X (k) = i}

absorption probabilities:
probability that some (absorbing) state i is eventually visited

ηi := lim
n→∞

ηi (n)
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DTMC - Absorption probabilities

given a list of disjoint sets of states S1, S2, ... SJ , evaluate the probability
that some state in Sj is reached before any state in any other set.

as a particular occurrence, this is the problem encountered in the
evaluation of the probability that a reducible DTMC reaches some of its
Bottom Strongly Connected Components.

The evaluation of absorption probabilities ηj can be reduced to the
solution of a system of linear equations.
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... more details on absorption probabilities - TBD

The problem of first passage time (also called hitting time) is about
evaluating the probability that at some time some state has already been
visited.

For a discrete time process, this amounts to evaluating
ηj (n) := Prob{firstj ≤ n}, where firstj denotes the time of the first visit of
state j .

ηj (n) can be evaluated through transient analysis on a modified model
where state j is made absorbing by removing all its outgoing edges and
adding a self-loop. In so doing, the probability that the modified model is
in j at time n is equal to the probability that in the original model at time n
the state j has already been visited.
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... more details on absorption probabilities - TBD

A related problem is the evaluation of the probability that some state j1 is
reached before some other state j2. Or, more generally, given a list of
disjoint sets of states S1, S2, ... SJ , evaluate the probability that some
state in Sj is reached before any state in any other set. As a particular
and notable occurrence, this is the problem encountered in the
evaluation of the probability that a reducible DTMC reaches some of its
Bottom Strongly Connected Components. This will also become relevant
in the analysis of the stochastic process underlying a Generalized
Stochastic Petri Nets with Immediate transitions.
The probability that set Sj has been reached before any other set within
time n can be evaluated on a modified DTMC where each set S1, S2, ...
SJ with an absorbing state σ1, ... σJ : in this setting the transient
probability πj (n) on the modified DTMC will represent; by taking n to∞,
the limit probability ηj := limn→∞ ηj (n) will represent the probability that
Sj is reached before any other set. Probabilities ηj are also called
absorption probabilities.
The evaluation of absorption probabilities ηj can be reduced to the
solution of a system of linear equations. To this end, let si with i ∈ [1, I]
be the transient states, and σj with j ∈ [1, J] the absorbing states, and let
πi (n) and ηj (n) be their probabilities. Finally, let pih be the transition
probabilities on the initial DTMC. In this setting, the Chapman
Kolmogorov equation for transient states takes the following form:

πh(n + 1) =
I∑

i=1

pih · πi (n)

We can take the sum over time n on both sides:
∞∑

n=0

πh(n + 1) =
∞∑

n=0

I∑
i=1

pih · πi (n)

and then change the index on the left-hand side to let the summation
start from the probability at time 0, and invert the summations over time
and over states on the right hand side:

∞∑
n=0

πh(n)− πh(0) =
I∑

i=1

pih

∞∑
n=0

πi (n)

By assuming

µi :=
∞∑

n=0

πi (n)

we can thus derive the vector of µi as the solution of a
non-homogeneous set of linear equations depending on the initial
probabilities:

µh = πi (0) +
I∑

i=1

pihµh (6)

which in vectorial form is expressed as:

µ = π(0) + µ · P (7)

In turn, since state σj is absorbing, the probability that ηj is eventually
reached can be written by summing up with n from 0 to∞ the probability
that state j is reached at time n:

ηj =
∞∑

n=0

I∑
i=1

pij · πi (n)

By changing the order of summations, we obtain:

ηj =
I∑

i=1

pij ·
∞∑

n=0

πi (n)

which yields:

ηj =
I∑

i=1

pij · µi (8)

which in vectorial form is expressed as:

η = µ · P (9)

By combining Eqs.(7,9), the vector µ is derived as the solution of a linear
system and the vector η si then derived from η.
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... more about the evaluation of steady state - TBD

The characterization of the concepts of irreducibility and aperiodicity
indicate that the conditions for the existence of a steady state solution
given by Theorem ?? are in fact extremely fair to apply to any finite state
and time-homogeneous DTMC. On the one hand, the problem of
periodicity can be overcome by separating the analysis of each different
periodic sub-DTMC. On the other hand, if the DTMC is reducible, the
steady state problem must be formulated separately on each single
Bottom Strongly Connected Component; each such component will have
its own steady state limit (apart dealing with possible periodicity as
above mentioned), and the limits of each BSCC will be combined
according to their probability to be eventually reached from the initial
state; this probability depends on the initial state probability distribution,
so that the model will be not ergodic, and can be determined as a the
solution of a problem fo first passage time.
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Continuous Time Markov Chain - CTMC

Continuous Time Markov Chain (CTMC):
a continuous time stochastic process X = {X(t), t ∈ R≥0}
that is right-continuous

∀t0 ∈ R≥0 ∃ lim
t→t+

0

X(t) = X(t0)

and always satisfies the Markov condition

∀i, j, t , τ,
∀M, iM , iM−1, ..., iM , ∀τM ≥ τM−1 ≥ ... ≥ m1 ≥ 0,
Prob{X(t + τ) = j|X(t) = i} =
Prob{X(t + τ) = j|X(t) = i,X(t − τ1) = i1, ...X(t − τM ) = iM}

the assumption of right-continuity conceals vanishing states
(i.e. states with null sojourn time)

we restrain the treatment to finite state and time-homogeneous CTMCs:

Prob{X (t + τ) = j|X (t) = i} = Prob{X (τ) = j|X (0) = i} (10)
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Embedded DTMC of a CTMC - TBD

In general, given a continuous time chain X = {X (t), t ∈ R}, a sequence
of time points {tn}∞n=0 identifies an an embedded chain
Xe = {X (tn), n ∈ N}.
The sequence {tn}∞n=0 can be defined in various ways fitting different
objectives. For instance, we might assume that the time points are
equidistant, i.e. tn = n ∗ δ where δ is a time tick. The most notable way to
embed a discrete time chain Xe into a continuous time chain X is to
assume that tn is the time of the n−th transition in the execution of the
process; this is often called "the" embedded chain of the process.

Given a CTMC M = {M(t), t ∈ R}, any of its embedded chains is a
DTMC, as it can be easily verified that the embedding preserves the
Markov condition.
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CTMC - quantities of interest

we are interested in evaluating
transient probabilities

πi (t) := Prob{X(t) = i}
steady state probabilities, if they exist

πi := lim
t→∞

πi (t)
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CTMC - Characterizing quantities

a CTMC is completely characterized by
the distribution of probability of the initial state

π0
i := πi (0)

the infinitesimal generator matrix Q:

qij :=
d
dt

pij (t)|0 = lim
dt→0+

Prob{M(dt) = j|M(0) = i}
dt

where pij (t) are continuous transition probabilities

pij (t) := Prob{M(t) = j|M(0) = i}

a CTMC is conveniently figured out as a graph
each and every state is a vertex
the edge from state i to state j is labelled by the value qij
for some good reasons, self-loops are not significant and the diagonal
elements of Q are not shown
TBD: concept of intensity in the flow of the probability mass
TBD: let some picture appear here, even the questionable example of the
light Off/On/Failed
TBD: A finite and time-homogeneous CTMC can be conveniently
represented as graph, where each state i is a vertex and each arc from
vertex i to j is labeled with the element qij of the infinitesimal generator. This
arc will represnet the flow of the mass of probability from state i to state j
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CTMC - properties of the infinitesimal generator

since M is right-continuous:

∀i 6= j,Pij (0) = 0 and Pii (0) = 1

for any fixed i and t , Pij (t) is a discrete distribution:

I∑
i=1

qij (t) =
d
dt

∑
i=1

Pij (t) =
d
dt

1 = 0

and thus:

∀i, qii = −
I∑

j=1,j 6=i

qij

since Pij (t) is non negative and Pij(0) = 0:

∀i 6= j, qij ≥ 0
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on the relation between CTMCs and exponential random variables

The Exponential distribution realizes the concept of memoryless
behavior for a continuous time random variable. In a similar manner, the
CTMC realizes the concept of Markovian behavior, where the future
evolution depends on the current state but not on the past history
through which the state was reached.

in a CTMC, the sojourn time in state k is a random variable
with negative exponential distribution with rate qkk :

FSJk (t) = 1− eqkk t

proof: a consequence of the Markov condition, similar to the proof that a
memoryless continuous time variable must be exponentially distributed

if M is a CTMC with infinitesimal generator Q,
and Me is its embedded chain with transition matrix P:

pij =
qij

−qii

proof: TBD
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... more details

Theorem

For a time-homogeneous CTMC with infinitesimal generator Q, the sojourn
time in any state i is an EXP variable with rate −qii .

prof: Let Hi (t) be the holding time in state i :

Hi (t) := Prob{t1 ≥ t |M(0) = i}
where t1 denotes the time of the first transition after time 0.

dHi (t)
dt = limdt→0

Prob{t1>t+dt|M(0)=i}−Prob{t1>t|M(0)=i}
dt

= limdt→0
−Prob{t1∈[t,t+dt]|M(0)=i}

dt

By applying the Markov condition, this can be rewritten as:

= limdt→0
−Prob{t1>t|M(0)=i}·Prob{t1<dt|M(0)=i}

dt

= Hi (t) · limdt→0

∑I
j=1,j 6=i Pij (dt)−Pij (0)

dt

where Pij denotes the continuous transition matrix of the CTMC, and
where the assumption of continuity implies that j 6= i → Pij (0) = 0.
Moreover, by definition the definition and properties of the infinitesimal
generator q:

limdt→0

∑I
i=1,i 6=j Pij (dt)−Pij (0)

dt = qij∑I
j=1,j 6=i qij = −qii

We thus finally obtain the differential equation
dHi (t)

dt
= −qiiHi (t)

whose solution, under the limiting value Hi (0) = 1 is:

Hi (t) = eqii t

which finally implies that the CDF of the sojourn time in the state i is an
EXP variable with rate qii :

FSJi (t) = 1− Hi (t) = 1− eqii t
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... more details

Theorem

Given a time-homogeneous CTMC M with infinitesimal generator Q, called
Me := {M(tn), n ∈ N} the embedded DTMC with tn denoting the time of the
n-th transition of M, the transition probability pij of Me is equal to

pij =
qij

−qii

prof: Let Gij (t) be the kernel defined as:

Gij (t) := Prob{t1 ≤ t ∧M(t1) = j|M(0) = i}
where t1 denotes the time of the first transition after time 0.

dGij (t)
dt = limdt→0

Prob{t1≤t+dt∧M(t1)=j|M(0)=i}−Prob{t1≤t∧M(t1)=j|M(0)=i}
dt

= limdt→0
Prob{t1∈[t,t+dt]∧M(t1)=j|M(0)=i}

dt

By applying the Markov condition, and then the definition of infinitesimal
generator, this can be rewritten as:

= Hi (t) · qij = eqii t · qij

We can thus finally write the following differential equation
dGij (t)

dt
= −eqii t · qij

which, under the limiting value Gij (0) = 0, yields:

Gij (t) =
qij

−qii
· (1− eqii t )

By taking t to the∞, this yields:

pij = limt→∞Gij (t) =
qij

−qii
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CTMC - transient analysis - TBD

Chapman-Kolmogorov equations

d
dt
πj (t)|0 = ...

proof: a consequence of the law of total probability and the Markov condition

in vectorial form
π′(t) = π(t) ·Q
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Chapman Kolmogorov equations - TBD

Given the initial state probability distribution π0 and the infinitesimal
generator Q, transient probabilities π(t) are determined by
Chapman-Kolmogorov equations:

d
dt πj (t)|0 = limdt→0

Prob{M(t+dt)=j}−Prob{M(t)=j}
dt =

limdt→0

∑I
i=1 Prob{M(t+dt)=j∧M(t)=i}−Prob{M(t)=j∧M(t)=i}

dt =

limdt→0

∑I
i=1(Prob{M(t+dt)=j|M(t)=i}−Prob{M(t)=j|M(t)=j})·Prob{M(t)=i}

dt =∑I
i=1 qij · πi (t)

(11)

Note that this comprises an application of the law of total probability
under the assumption of the Markov condition and time-homogeneity:
the set of events that can lead to M(t + dt) = j is partitioned into (disjoint
and total) events (M(t) = i) ∧ (M(t + dt) = j|M(t) = i); the total
probability is obtained by summing up the probability of each event; the
Markov condition is applied to express the probability of
(M(t + dt) = j|M(t) = i) independently from states visited before t ;
time-homogeneity is applied to express the probability of transition
(M(t + dt) = j|M(t) = i) independently of t .
In vectorial form, Eq.(11), can be rewritten as:

π′(t) = π(t) ·Q (12)
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CTMC - Steady state analysis - TBD

for a finite, time-homogeneous, and irreducible CTMC,
steady state probabilities exist,
and they do not depend on the initial distribution (ergodicity)

derive the solution directly from Chapman Kolmogorov equations ...

system of linear equations ... TBD
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Steady state analysis - TBD

Theorem

For a finite, time-homogeneous, and irreducible CTMC, steady state
probabilities exist unique, i.e. there exists unique the limit:

πi = lim
t→∞

πi (t)

Note that for a reducible CTMC, absorption probabilities in each Bottom
Strongly Connected Component can be computed on the embedded
chain, and Theorem3 can then be applied in each BSCC. To this end, it
is relevant that the steady state solution oes not depend on the initial
probability distribution, which makes it insensitive to the particular state
where the absorption in a BSCC occurs.
TBD ... se la CTMC che stiamo studiando deriva da una GSPN l’ipotesi
di finitezza diventa che la GSPN abbia finite marcatire raggiungibili;
l’ipotesi time-homogeneous segue direttamente da avere i paraetri
costanti sul modello (i.e. la topologia della rete e il parametro R(t,m)
sono immutabili).
TBD .... una volta che il teorema si applica, poi determinare la soluzione
e’ facile perche’ se esiste steady state allora la derivata del vettore delle
prob deve andare a 0 e quindi lo steady state risolve il sistema
omogeneo 0=pi*Q, con la condizione al contorno |pi|=1 che risolve il
fatto che Q non e’ a rango massimo avendo somma 0 su ogni riga.
E quindi la soluzione diventa:

...TBD (13)
TBD... esiste poi un altro modo di calcolare lo steady state, che evita di
lavorare su Q e riduce il problema invece alla matrice di trasnzione PO
della catena embedded (che ha il pregio di essere stocastica):
TBD ... equazione che riduce il calcolo alla combinazione di probabilita’
transienti della DTMC embedded con tempi medi di soggiorno in
ciascuna marcatura
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CTMC - transient analysis - TBD

analytic form of transient probabilities as exponential matrix ... TBD

uniformization ... TBD
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Transient analysis

Given the vector of initial probabilities π0, Eq.(12) supports derivation of
transient probabilities ...
...TBD... forma con matrix exponential... usando la decomposizione di
Jordan si vede che le componenti sono expolinomiali con tassi
corrispondenti alla parte reale degli autovalori di Q e gradi polinomiali
dipendenti dal grado di confluenza degli autovettori... si calcola con 21
dubious ways ... in generale ha alcuni difetti che ne rendono instabile la
truncation: Q non è stocastica, questo è un sviluppo di Taylor e quindi
funziona male quando ci si allontana da 0, e comunque sono polinomi
che prima o poi esplodono.
... TBD ... esiste un altro approccio che è quello che funziona:
uniformization ... scomporre la prob di essere in i al tempo t in essere in i
dopo n passi e avere n passi entro t sommando per n=0,inf (total
probability law), .... poi la prob di essere in i dopo n passi e’ indipendente
dal tempo speso per fare gli n passi (poprrieta’ di Markov e notably il
fatto che su una exp il tempo trascorso è indipendente da come è risolta
una race) ... resta il problema che il numero di passi fatti entro il tempo t
non si esprime in forma chiusa ... il problema è che ciascuno stato ha un
diverso tempo di soggiorno e quindi il numero di passi fatti dipende dal
percorso nella storia passata ... se aggiungiamo dei self-loops viene
modificato il comportamento della DTMC embedded ma non della
CTMC ... e lalora possiamo aggiungere in ciascuno stato un self loop di
diverso tasso in modo che i tempi di soggiorno nei diversi stati siano
identicamente distribuiti... nella pratica si aggiunge allo stato i un
self-loop di tasso gamma-i in odo che il tempo di soggiorno in i sia una
exp di tasso gamma con gamma=maxlambda-i*1.03 ... su qyusta catena
uniformizzata il numero di passi fatti entro n è un processo di Poisson
(processo contatore di arrivi con intertempo exp di tasso gamam) e
quindi si esprime in forma chiusa ... e quindi alal fine di tutto:
TBD: equazione di uniformization
Questa funziona molto meglio perche’ le prob della catena embedded
del processo uniformizzato si calcolano lavorando sulla matrice di
transizione P-eu che e’ stocastica, e poi i polinomi sono dominati da una
exp negativa... e c’e’ anche un modo di calcolare min e max sull’indice n
in funzione di quanto vale gamma, il tempo t a cui si calcola la prob, e
l’errore epsilon che si tollera nel calcolo.
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CTMC - embedded chain

let M := {M(t), t ∈ Rgeq0} be a CTMC,
and let Me := {M(n), n ∈ N} be the discrete time chain that samples M
at each state transition

Me always satisfies the Markov condition and is thus a DTMC

this is usually called "the" embedded chain of Me,
but other embedded chains could be built as well with other samplings
(e.g. sample at equidistant time points, at each visit of a set of states,...)
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underlying stochastic process of a GSPN

the continuous time marking process M := {M(t), t ∈ R≥0} of a GSPN
always satisfies the Markov condition

proof: according to the semantics of GSPNs, given the current marking, the
distribution of the time to the next firing and the probability of each feasible
next event are determined, and they are not conditioned by any previous
observation
M is thus a CTMC
since M is abstracted so as to be right continuous,
vanishing states with enabled IMM transitions are concealed

also the discrete time marking process Md := {M(n), n ∈ N} of a GSPN
always satisfies the Markov condition

and thus comprises a DTMC
which observes also vanishing states, but misses continuous time durations

a full characterization of the stochastic process underlying a CTMC
requires that both M and Md be characterized

derive the infinitesimal generator Q of M
the transition matrix P of Md

and the distribution of initial probabilities π0
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The marking process of a GSPN - 1/2

let Me and M be the discrete time and continuous time marking
processes of a GSPN, respectively:

Me := {M(n), n ∈ N}
with M(n) := marking after n firings

M := {M(t), t ∈ R}
with M(t) := marking at time t

Since in the GSPN all transitions are either IMM or EXP, the time
elapsed in the current marking does not condition the future evolution of
the net, i.e. the marking completely determines the stochastic
characteristics of the future behavior independently of the past history.

According to this, Me is a DTMC and M is a CTMC.

The two stochastic processes are completely characterized as soon as
we have determined the transition probabilities of the DTMC and the rate
of the Exponential distribution of the sojourn time in a state of the CTMC.
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The marking process of a GSPN - 2/2

Theorem

The states of the DTMC Me are all and only the reachable markings, and the
transition matrix P is defined as:

pij =

∑
mi

th→mj
R(th,mi )∑

mi
th→

R(th,mi )

Theorem

The states of the CTMC Me are all and only the tangible reachable markings,
and the rate of the sojourn time in the state i is the sum of the rates of the
EXP transitions enabled in the tangible marking mi , i.e. the element qii of the
infinitesimal generator is:

qii =
∑
mi

th→

R(th,mi )
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