Chapter1 Mathematical Preliminaries and Error Analysis

Exercise 1.1

The relative error is
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, for all
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Exercise 1.2

Set the relative error of 
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 is 2%.To evaluate the relative error
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Exercise 1.3

The sequence 
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（Three significant figures），to compute the error of
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.Is the computational process stable?

Chapter 2 Solutions of Equations of One Variable
Exercise 2.1

Suppose 
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（1）write out the Newton iterative format；
（2）Prove : this iterative format is linear convergence 。

Exercise 2.2

Approximate of
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 by Newton's method to. Get x0=1.7, calculate three times and keep five decimal places.

Exercise 2.3

Show that 
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has a root in (1, 1.5).  And use the Bisection method to determine an approximation to the root that is accurate to at least within 0.01.

Exercise 2.4

Show that 
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 has a unique fixed point on the interval [1, 2].

And discuss their divergence.
Chapter 3 Interpolation and Polynomial Approximation
Exercise 3.1

Approximate 
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 by quadratic Lagrange interpolating polynomial. Interpolation nodes and the corresponding function values are in the following table.
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	    0.0          0.30           0.40

0.0         0.2955         0.3894


Exercise 3.2

We have known to the relevant data of function, as follows.
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Determine three times of interpolation polynomial 
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 which pass through the points by Newton interpolation formula. And calculate the approximate value
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Exercise 3.3

The given data as follows:
	x
	0
	2
	3
	5

	f(x)
	1
	-3
	-4
	2


1). Determine the three Lagrange interpolation polynomial 
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2). Determine the three Newton interpolation polynomial 
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Exercise 3.4

Suppose
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are distinct,
Proof:
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And determine N time Newton interpolation polynomial
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Exercise 3.5

Determine Hermite Polynomials which can meet the condition.

For a given function f , these polynomials agree with f at 
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Chapter 4 Numerical Differentiation and Integration

Exercise 4.1

Approximate 
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by Trapezoidal Rule, Simpson’s Rule, Cotes formulas. And estimate error of various methods.
Exercise 4.2
Use the Composite Trapezoidal rule to find approximations to
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	1.8
	2.0
	2.2
	2.4
	2.6
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	3.1
	4.4
	6.0
	8.0
	1.00


Exercise 4.3

Approximate 
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 using Gaussian quadrature with n = 2, 3.

Chapter 5 Direct Methods for Solving Linear Systems

5.1  Represent the linear system
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as an augmented matrix and use Gaussian Elimination to find its solution.
5.2  Find the determinant of the matrix
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Using the row or column with the most zero entries.
Chapter 6  Iterative Techniques in Matrix Algebra

6.1  Determine  the l2 norm and the l∞ norm of the vector x=(-1,1,-2)t.

6.2  The linear system
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Has the exact solution x=(x1,x2,x3)t=(1,1,1)t, and Gaussian elimination performed using five-digit rounding arithmetic and partial pivoting, produces the approximate solution

[image: image44.wmf]123

(,,)(1.2001,0.99991,0.92538)

tt

xxxx

==

%%%%

.
Determine the l2 and l∞ distances between the exact and approximate solutions.
Chapter 7 Approximation Theory

7.1 Find the least squares line approximating the data in Table Table 7.1
	xi
	yi
	xi
	yi

	1
2
3
4
5
	1.3
3.5
4.2
5.0
7.0
	6
7
8
9
10
	8.8
10.1
12.5
13.0
15.6


7.2 Fit the data in Table 8.2 with the discrete least squares polynomial of degree at most 2.
7.2
	i
	xi
	yi

	1
2
3
4
5
	0
0.25
0.50
0.75
1.00
	1.0000
1.2840
1.6487
2.1170
2.7183


Chapter8  Initial-Value Problems for Ordinary Differential Equations

8.1 Use Euler’s method to approximate the solution to the initial-value problem with h=0.1
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8.2 Use the 4th-order Runge Kutta method to solve the above question. Here we have the step size h equal 0.2 .
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