拓扑空间的构造方式

一、拓扑空间的任何一个子集都可以被赋予一个子空间拓扑,子空间拓扑中的开集是全空间上的开集和子空间的交。

二、对任何非空的拓扑空间族,我们可以构造出这些拓扑空间的积上的拓扑,这种拓扑称为积拓扑。对于有限积来说,积空间上的开集可以由空间族中各个空间的开集的积生成出来。

         积空间是指拓扑空间笛卡儿积,并配备了一个称为积拓扑的自然的拓扑结构。令I为(可能无穷的)指标集并设Xi对于每个I中的i为一个拓扑空间。置X = ΠXi,也即集合Xi的卡积。对于每个I中的i,我们有一个标准投影pi:X→Xi。X上的积拓扑定义为所有投影pi在该拓扑下连续疏拓扑(也就是开集最少的拓扑)。该乘积拓扑有时也称为吉洪诺夫拓扑。

         很明显,X上的乘积拓扑可以表述为形为pi(U)的集合生成的拓扑,其中i属于I而U是Xi的一个开集。换句话说,集合{pi(U)}构成X上的拓扑的子基。X的子集是开的当且仅当它是(可能无穷多的)的有限形为pi(U)的集合的交集并集。pi(U)有时称为开柱,而它们的交集称为柱集。

         我们可以用构成X的空间Xi的基来表述乘积拓扑的设对于每个i属于I,选取一个集合Yi或者是整空间Xi或者是该空间的一个基,并且满足Xi = Yi对于除了有限I中的i之外的所有i成立。令B为集合Yi的卡积。所有可以这样构造的B集合的族构成乘积空间的一个基。这意味着有限多空间的乘积有一个由Xi的基元素的乘积组成的基。

         如果指标集为有限(特别是,对于两个拓扑空间的乘积),则积拓扑有更简单的表述。这个情况下,每个Xi的拓扑的乘积构成X上的拓扑的一个基。一般来讲,Xi的拓扑的乘积构成一个称为X上的盒拓扑的基。一般情况下,盒拓扑比积拓扑更细,但是对于有限乘积,它们是相同的。

三、商拓扑可以被如下地定义出来:若X是一个拓扑空间,Y是一个集合,如果f:X→Y是一个满射,那么Y获得一个拓扑;该拓扑的开集可如此定义,一个集合是开的,当且仅当它的逆像也是开的。可以利用f自然投影确定下X上的等价类,从而给出拓扑空间X上的一个等价关系

     例子

1.黏合:通常,拓扑学家讨论将一些点黏合在一起。如果X是一个拓扑空间,点“黏合”在一起,这意味着我们考虑由等价关系a~b当且仅当a = b或a = x, b = y(或a = y, b = x)得到的商空间。即这两个点被看作一个。

2.考虑一个单位正方形I2 = [0,1]×[0,1]以及由所有边界点等价生成的等价关系~,从而所有边界点等同到一个等价类。则I2/~同构于单位球面S2。

3.黏着空间(Adjunction space):更一般地,假设X是一个空间,A是X的一个子空间。我们可以将A中所有点等同到一个等价类,而A以外的点不变。所得的空间记作X/A。2维球面同构于将单位圆盘的边界等同为一个点D2/D2。

4.考虑集合X = R',取通常拓扑的实数集,记x ~ y 当且仅当xy是一个整数。则商空间X/~同构于单位圆周S1,同构映射为将x的等价类映为 exp(2πix)。

5.上一个例子的一类大量的推广如下:假设一个拓扑群G连续作用在空间X上。我们可以构造X上一个等价关系,如果两点等价当且仅当它们在同一个轨道中。这个关系下的商空间称为轨道空间,记作X/G。上一个例子中G = Z通过平移作用在R上。轨道空间 R/Z同构于S1。

四、Vietoris拓扑