

第九章 涂料的选用

- ❤第一节 涂料选择 Choice Of Paints
- ❤第二节 涂料用量估算
 Account Of Paint Consumption
- ❤ 第三节 涂料兑稀方法 Dilution Of Paint
- ❤ 第四节 涂层色彩设计 Colorway For Paint

一、根据被涂产品的使用环境条件来选择

十个方面的环境因素:

- ① 温差作用: 热胀冷缩易造成涂膜起泡、开裂与脱落;
- ○② 紫外线辐射: 在天空、海洋和沙漠环境中,涂膜易老化;
- o ③ 酸、碱性气体: 空气中含 SO_2 、HCl、 H_2S 、 NO_2 、 NH_3 及 O_2 时,涂膜 易造受严重破坏;
- ④ 潮湿与雨水:涂膜吸水膨胀而鼓泡,造成基体过早腐蚀;
- ○⑤霉菌作用: 使涂膜遭受直接破坏;
- ○⑥ 化学品腐蚀:酸、碱、盐、农药、化肥及其它化学品使涂 膜遭受直接的严重破坏;
- ⑦ 生活品: 像洗涤剂等会对涂膜产生一定的影响;
- ⑧ 机械作用:风沙、石击、摩擦和碰撞使涂膜产生磨蚀和开 裂脱落;
- · ⑨ 海洋盐分的作用: 易造成基体过早腐蚀使涂膜起泡、脱落;
 - ⑩ 机油和汽油: 涉及到涂膜的耐油、耐溶剂性问题。

各类涂料的涂层适用的环境条件

环境条件	油性漆	沥青漆	酚醛漆	醇酸漆	基	硝基漆	过氯乙烯	环氧漆	丙烯酸	聚氨酯	有机硅
在一般大气条件下使用,对防腐和装饰 性要求不高	V		√								
在一般大气条件下使用,但要求耐候性 好				1	√	~	√		√	√ ①	
在一般大气条件下使用,但要求防潮防 水性好		√	√				√	V	√	√	
在湿热条件下使用,要求有三防性(防湿热、防盐雾、防霉)			\checkmark		√		√	V	√	\	V
在化工大气条件下使用,或要求耐化学 性较好		√	√				√	1		√	
在高温条件下使用											V

二、根据涂漆产品的材质来选择

材料:钢铁、有色金属、木材、塑料(含复合材料)、 皮革、橡胶、织物、纸张、玻璃、陶瓷等。

各种材质的表面物理、化学性质的差别,对涂料 的适应性就不一样, 施工要求也不同。

不同的材料由于腐蚀机理和本身的抗腐蚀性能的差异,设计的涂层体 系也是不一样的。不能把钢铁表面的涂层体系照抄硬搬到铸铁或轻金属甚 至是塑料表面上去。

例如:

钢铁表面的涂层体系一般是<u>底漆+面漆(+</u>清漆);

单涂层: one-coat system paints

复层涂料(=自层离涂料,heterophase and self-stratifying coatings)

复合涂层: tow-coat system paints three-coat system paints

复层涂料≠复合涂层体系涂料

铝金属表面氧化膜有优良的防护性,只需着色后涂一道清漆足矣!

塑料主要是防止光老化,只需按色彩规划涂一道彩色面漆。

涂料与材质的适应性(5-最好1-最差)

涂料	钢铁	轻金 属	塑料	木材	皮革	玻璃	织物
油脂漆	5	4	3	4	3	2	3
醇酸树脂漆	5	4	4	5	5	4	5
氨基树脂漆	5	4	4	4	2	4	4
硝基漆	5	4	4	5	5	4	5
酚醛树脂漆	5	5	4	4	2	4	4

涂层性能涂料	钢铁	轻金 属	塑料	木材	皮革	玻璃	织物
环氧树脂漆	5	5	4	4	3	5	/
氯化橡胶漆	5	3	3	5	4	1	4
丙烯酸酯漆	4	5	4	4	4	1	4
氯醋共聚树脂漆	5	4	4	4	5	4	5
偏氯乙烯漆	4	4	5	4	5	/	5
有机硅漆	5	5	4	3	3	5	5
呋喃树脂漆	5	3	5	5	3	3	3
聚氨酯漆	5	5	5	5	5	5	5
醋丁纤维素	4	4	4	4	1	2	3
乙基纤维素	4	4	5	3	5	3	5

三、选择的涂料应满足施工条件的要求

施工条件是指涂漆方法和涂膜干燥条件。

根据现有装备情况选用适宜涂料。

在设施简陋的情况下,一般选用自干涂料和快干涂料;

在生产量大幅度提高时,可配合设备改造选用高品质的烘漆 築。

另外,每一种涂料都有适宜的涂漆方法(见表),必须引起重 视。例如,空气喷涂、静电喷涂和热喷涂同类涂料,虽然表 面上差不多,实际有本质的差别。

各类涂料适宜的涂漆方法和干燥条件

	·	
涂料	涂漆方法	干燥条件
油性漆	刷涂;	自干 ,24 小时
酚醛漆	<i>刷涂</i> ;浸涂、喷涂,高压无气喷涂	自干,18小时
沥青漆	<i>浇涂</i> ;刷涂、喷涂,热喷涂	自干,及低温烘干(100℃, ≤ 1 小时)
醇酸漆	<i>喷涂,高压无气喷涂</i> ;刷涂、 浸涂	自干,(18~24小时) 及低温烘干(≤100℃, ≤2小时)
氨基漆	喷涂、浇涂,浸涂;	烘干90~150℃,1~2小时
硝基漆	<i>喷涂、热喷涂、高压无气喷</i> 涂; 浸涂、静电喷涂	自干 ,1 小时

涂料	涂漆方法	干燥条件
过氯乙烯漆	<i>喷涂、热喷涂、高压无气喷涂;</i> 浸涂、静电喷涂	自干,3小时
丙烯酸漆	<i>喷涂、热喷涂、高压无气喷涂</i> ; 浇涂、滚涂	自干,1小时及烘干(140℃)
胺固化环氧	<i>喷涂</i> ; 刷涂	自干, 12 小时
环氧酯	<i>喷涂</i> ; 刷涂	自干(24小时)及烘干
环氧酚醛	<i>喷涂</i> ;刷涂、浸涂	烘干,180℃,1小时
聚氨酯	<i>喷涂</i> ;刷涂,浸涂	自干(24小时)
有机硅	<i>喷涂,刷涂</i> ;浸涂	自干及烘干
电泳漆	电泳涂漆;	烘干,160~180℃、1小时
粉末涂料	静电喷涂,流化床涂覆	烘烤

四、根据技术经济性来选择涂料

技术的可行性主要是指是否便于施工操作及能否保证质量稳定。

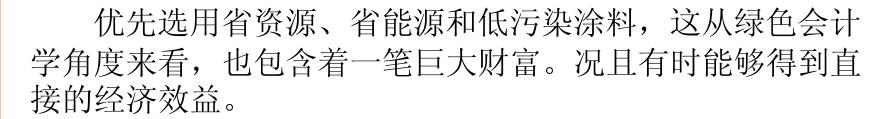
譬如一槽阴极电泳漆,工艺管理的技术要求很高,如果技术条件跟不上 或疏于管理,很容易造成涂膜缺陷或槽液报废,最终导致巨大经济损失。

经济性主要从涂料成本、施工费用和涂层使用寿命几方面综合考虑。总 的原则是不要功能过剩。

例如:

农用车涂层的要求远比汽车涂层低的多,采用阳极电泳底漆足够,没必 要采用阴极电泳漆:

一般的塑料制品可用硝基或丙烯酸漆,没必要用聚氨酯漆。



单涂层能满足要求的,就不采用复涂层,这可降低费用; 使用期限长的,应选用高性能涂料,减少维护费用。 例如:

火车机车和车厢,选用下列涂层体系: 40~50μm双组分环氧高固体分底漆(或芳香族聚氨酯底漆)、40μm芳香族聚氨酯高固体分中涂及40μm脂肪族聚氨酯高固体分面漆,在炎热气候(如沙漠地区)条件下,最多可使用30年,期间只需几次局部维修和1~2次全面的面漆重涂。若用醇酸漆涂覆,最多二年就需全面修补。

例如:

厚200~250μm的桥梁钢架结构涂层,原采用三涂层体系(湿 固化PU富锌底漆-PU中涂-脂肪族PU面漆),都是固含量较低 的传统溶剂性涂料。

现采用环境性涂料,二涂层体系(湿固化PU富锌底漆-高固体 分PU面漆),表面处理费用持平,材料费用增加15%,但施 工费用减少15%~20%,总费用可减少12%~14%,复合涂层 的盐雾试验达5000h, 具有良好的防护性。

五、复合涂层各涂料应配套使用

由于单一涂层往往不能同时满足各项性能要求,故产品的防护和装饰一般 都按复合涂层体系来进行设计。

例如:

汽车根据其豪华、高级、中档、普通诸等级,分别采取5C5B、4C4B、 3C3B和2C2B的复合涂层体系。

对于钢铁制品,具有优良性能的复合涂层都由底漆、中涂、面漆和罩光清 漆构成。其它材质和制品也有一定复合涂层模式。

为了保证层间结合力和防止复合涂层出现缺陷,各层涂料必须配套使用。

同漆基的涂料,配套性良好;不同漆基的涂料,配套性往往不好,一般需 改性来提高两者之间的结合力。

*涂膜硬度和强度*相一致的涂料,**配套性较好**。

如果下层涂膜硬度太软,易发生起皱、脱落。强溶剂性面漆对耐溶剂性 差的底层易产生"咬底";若增加这类底层的颜填料份,则又可能避免咬 底现象。

各层涂膜的涂料干燥方式也应相一致,以免某层涂膜交联过度导致性能 劣化。

由于底漆侧重于防护作用,面漆侧重于装饰作用,故这两种涂料采用不 同的基料配制。它们之间的配套性参见表。面漆之间的重涂配套应尽量采 用同类涂料。

对于防护装饰性涂层厚度不要求很高的情况下,也可以选用复层涂料。 如环氧/丙烯酸自层离涂料、环氧/氯化橡胶自层离维护涂料。它们只需涂 覆一次,在成膜过程中自动发生二相分离形成环氧防护性底层和丙烯酸面 层。

底、面漆之间的配套性

面漆 底漆	油基	酚醛	沥青	醇酸	氨基	硝基	过氯 乙烯	丙烯 酸	环氧	聚氨 酯	有机硅
油基漆	V	1		V							
酚醛		1	√	√	V	√	$\sqrt{}$				
沥青			V								
醇酸		1		V	V	\ \	$\sqrt{}$		V		
氨基					V						
硝基											
过氯乙烯							\checkmark				
丙烯酸							$\sqrt{}$				
环氧				$\sqrt{}$	$\sqrt{}$		\checkmark	$\sqrt{}$	$\sqrt{}$		
聚氨酯											

第二节 涂料用量估算

ACCOUNT OF PAINT CONSUMPTION

- 当涂料调至施工粘度时,如果长时间放置,颜料会絮凝沉降, 造成涂膜色泽不一致或光泽下降。
- 对于快干性涂料,放置过程中溶剂大量挥发使粘度上升,导 致喷涂雾化不良:
- 对于双组分涂料, 超过使用时间会胶化报废。
- 为了避免这些现象的发生,待调稀的涂料量以当班用完为宜, 最长不超过三天。
- 涂料用量估算包括: 计算法、统计法和实测法, 以单位面积 消耗量表示。

常用涂料的基料(按纯固体计)的密度

树脂	密 度	树脂	密度
油脂	0.95	醇酸树脂	1.0
氨基树脂	1.25	环氧树脂	1.2
酚醛树脂	1.2	聚氨酯	1.2
硝基纤维素	1.7	氯化橡胶	1.7
乙烯基树脂	1.2	丙烯酸树脂	1.2
沥青	1.0	有机硅树脂	1.1
无机硅酸盐	2.7		



第三节 涂料兑稀方法 DILUTION OF PAINT

涂料调至施工粘度按以下步骤进行:

- ① 核对涂料的品种、生产日期。对沉降性大的涂料可提前倒 置一段时间,并适当晃动。
- ② 开桶检查并搅均匀。检查主要是目测有无浑浊、变稠、胶 化和沉淀现象。
- ③ 兑稀: 在*搅拌下,少量多次逐渐加入稀料*,直到施工粘度。 在稀释过程中,颜料絮凝沉降作用大的涂料(如黑漆)及水性 漆要特别引起注意, 防止局部过稀现象的发生。而水性漆在 稀释过程中粘度变化还存在着反常行为。

- ④ 添加辅助材料: 在施工前要添加的辅助材料主要是防潮剂、 流平剂、催干剂等。
- ○⑤ 过滤: 底漆采用120目筛过滤; 面漆采用180目筛过滤, 或 者先经120目过滤再经180目过滤。
- ○⑥ 按涂漆的先后顺序,分别调稀底漆→面漆。
- 对于硝基漆等快干涂料,要随调随用,保证涂膜厚度和色泽 的一致性;
- o 双组分涂料混合后应在**适用期**内用完;
- 施工时间长或沉降性大的涂料(如闪光漆、珠光漆等), 施工期 间应给与搅拌,确保涂膜色泽均匀一致。
- 用漆量较大时,应采用带有恒温和搅拌循环的输漆罐,更大 批量作业应采用供漆系统,使涂膜光泽、色泽和厚度始终都 能保持一致。

基本概念、定义和重要英文词汇

- 涂料选择
- 涂料用量估算
- 涂料兑稀方法
- 涂层色彩设计

第十章 漆前表面处理

- **一**第一节 漆前处理的作用和方法
- ☞第二节 除锈(自学)
- **罗**第三节 除油
- **学**第四节 磷化处理
- **第五节 氧化处理**
- ☞ 第六节 塑料的表面处理(自学)

思考题

- 1)涂料应根据哪几方面来进行选用?
- 涂料用量如何进行估算?
- 涂料兑稀时应注意哪些方面?
- 如何对待涂饰产品进行色彩规划设计?

